Construction of k-matchings in graph products
نویسندگان
چکیده
A k-matching M of a graph G = (V,E) is subset ⊆ E such that each connected component in the subgraph F (V,M) either single-vertex or k-regular, i.e., vertex has degree k. In this contribution, we are interested k-matchings four standard products: Cartesian, strong, direct and lexicographic product. As shall see, problem finding non-empty (k ≥ 3) products NP-complete. Due to general intractability problem, focus on different polynomial-time constructions product ⋆ H based kG-matchings MG kH-matchings MH its factors H, respectively. particular, properties have be satisfied these yield maximum respective products. Such also called “well-behaved” provide several characterizations for type k-matchings. Our specific satisfy property being weak-homomorphism preserving, constructed matched edges never “projected” unmatched factors. This leads concept preserving Although here not always products, they size among all Not k-matchings, however, can our manner. We will, therefore, determine maximum-sized elements allweak-homomorphism within provided matchings some assumptions.
منابع مشابه
Scalable $k$-NN graph construction
The k-NN graph has played a central role in increasingly popular data-driven techniques for various learning and vision tasks; yet, finding an efficient and effective way to construct k-NN graphs remains a challenge, especially for large-scale high-dimensional data. In this paper, we propose a new approach to construct approximate k-NN graphs with emphasis in: efficiency and accuracy. We hierar...
متن کاملperfect matchings in edge-transitive graph
we find recursive formulae for the number of perfect matchings in a graph g by splitting g into subgraphs h and q. we use these formulas to count perfect matching of p hypercube qn. we also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in g, is the graph constructed from by deleting edges with an en...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولOn the k-path vertex cover of some graph products
A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ψk(G) the minimum cardinality of a k-path vertex cover in G. In this paper improved lower and upper bounds for ψk of the Cartesian and the direct product of paths are derived. It is shown that for ψ3 those bounds are tight. For the lexicographic produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The art of discrete and applied mathematics
سال: 2022
ISSN: ['2590-9770']
DOI: https://doi.org/10.26493/2590-9770.1462.b03